
고대 바다 최고위과정 특강

2023.6.17

박찬홍

한국해양과학기술원

독도전문연구센터장(전 동해연구소장)

Contents

- 동해, 어떤 바다인가?
- Ш

동해바다 자원 잠재력

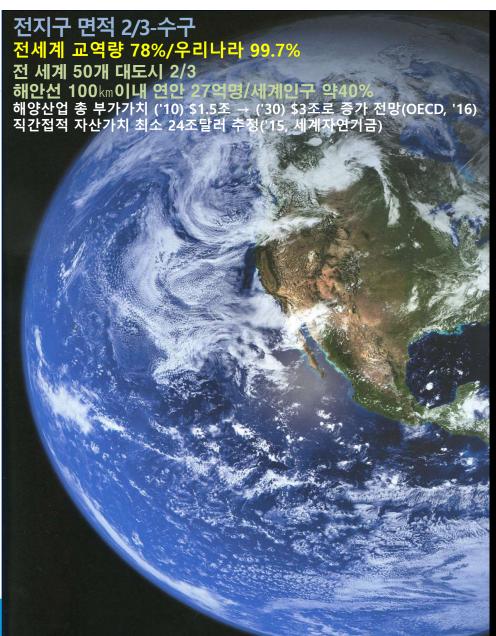
Ш

동해바다 과학연구 프로그램

동해의 새로운 도전과 기회

해양의 중요성과가치

"21세기는 해양의 시대"
"모든 나라의 운명은 해양력에 달렸다"
- 폴 케네디(미, 예일대 교수)



"해양산업이 정보화 시대의 4대 주력산 업으로 부상할 것"

- 앨빈 토플러(미래학자)

인 이 이 한국해양과학기술원

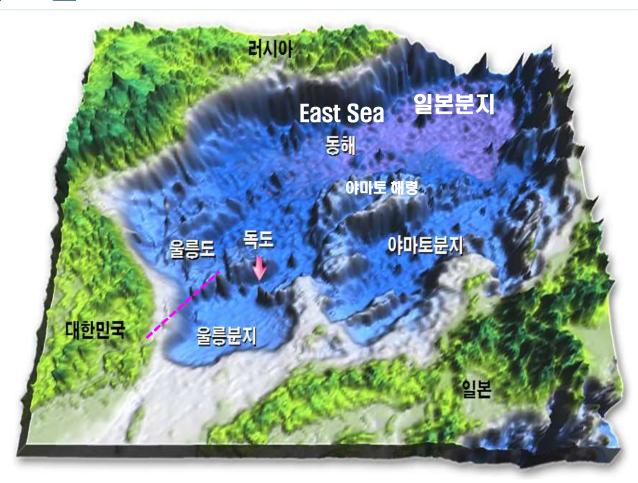
Ocean


지구 기후변화 조절능력, 오염물질 자정 능력,해양생태계의 재생산 능력...

- 지구생물 80% 서식
- 인류 식량자원 공급원, 석유/가스/광물자원 보고
- 지구산소 절반이상 생산
- 그러나...
 바다자원감소, 환경오염,
 이산화탄소증가 온난화, 기후변화,
 지진 쓰나미 등 지각변동과 자연재해 증가
 => 지구 몸살

동해, 어떤 바다인가?

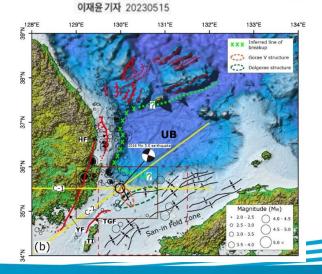
동해바다의 특별성, 중요성



동해, 어떤 바다인가?

동해의 탄생과 현재

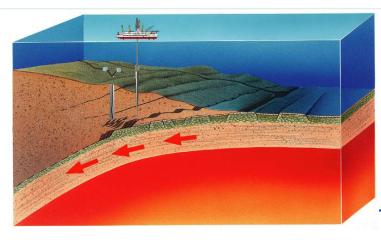
동해 바다 속 모습

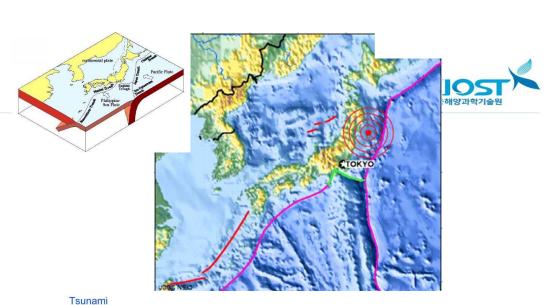


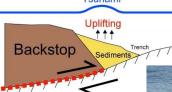
동해 강력한 지진!!

강원 동해시 북동쪽 동해 해역에서 규모 4.5 지진···올해 한반도에서 발생한 지진 가운데 가장 강해 [속보영상]

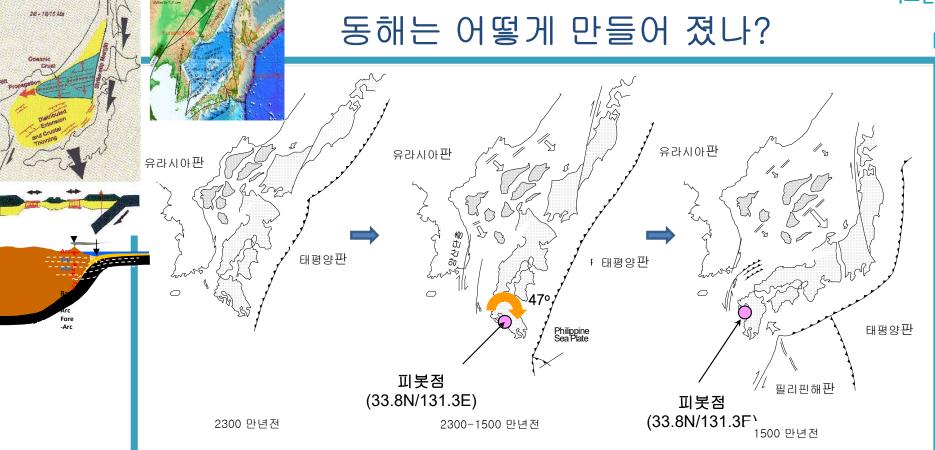
일본 이시카와현 **지진 발생**

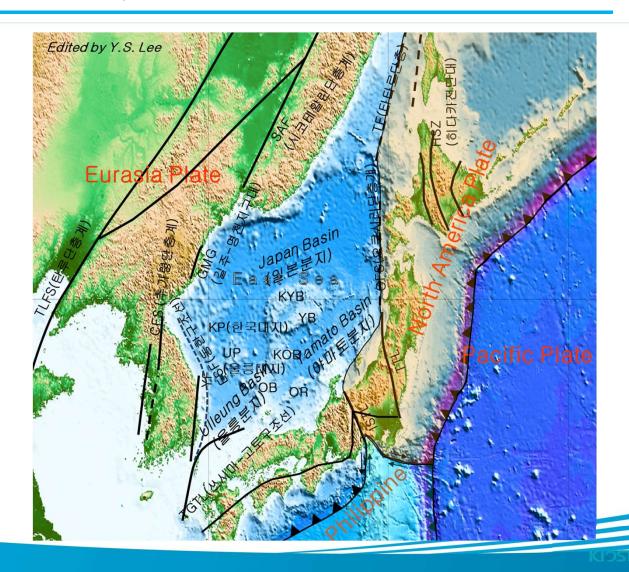

5일 오후 2시 42분께 이시카와현 북부 노토반도 규모 6.3의 지진 발생, 진원 깊이 12km

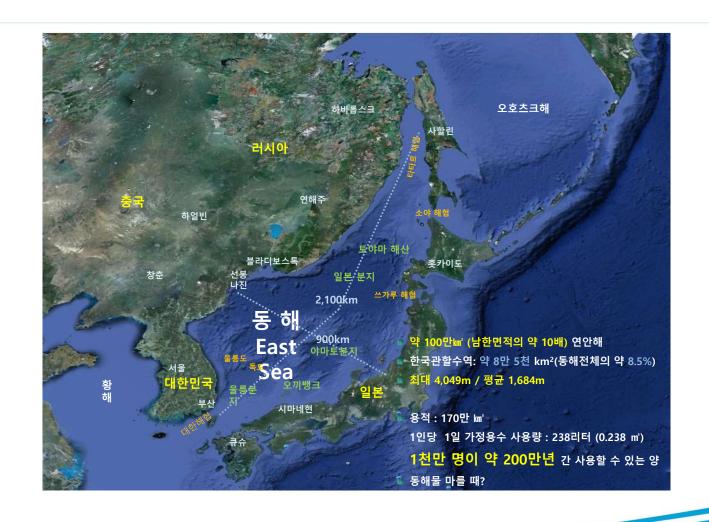



⑦연합뉴스 자료:일본기상청

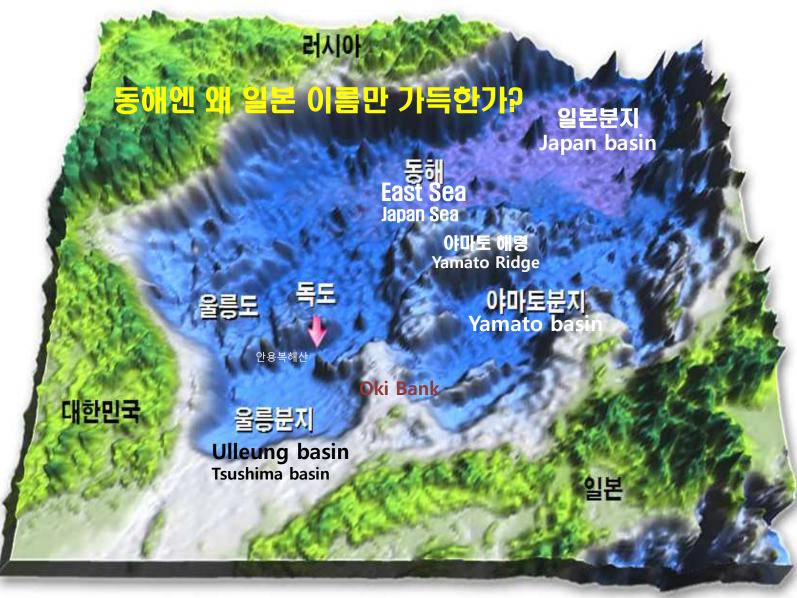
박영석기자 20230505


일본 동북부 지진, 쓰나미

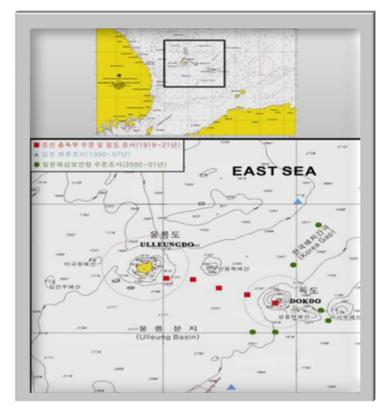



- ① Parallel Spreading during 23-17 Ma and then
 - ② Fan-shape spreading during 17-15 Ma

동해 지각구조, 지진대

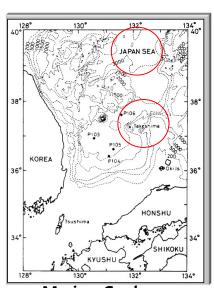


동해, 어떤 바다인가?

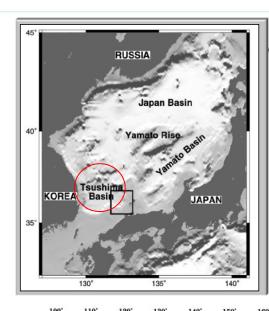

왜 일본지명이 동해에 있나?

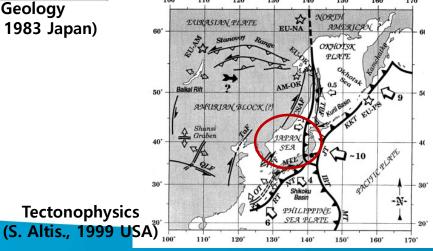
동해 독도에 대한 일본의 치밀한 공세

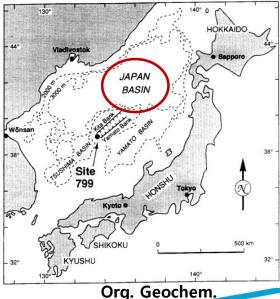
일본의 과거 독도주변 과학조사 (1919년부터)


일본의 과거 해양조사측선 (1960년대 부터)

1994년 11월 유엔해양법협약 발효/1996년 1월 한국가입




동해, 남들은 왜 일본해 라고 부르나?


Marine Geology (Kato et al., 1983 Japan)

Jour. Geophy. Res. (Jolivet et al., 1991 French)

- 일본은 1900년대 초부터 동해·독도에 대한 과학조사 실시
 - ☞ Japan Sea 명칭 사용

(RICHARD M. KETTLER, 1995 USA)

일본해 확산 배경과 동해 표기 문제 제기

16~18세기.

• 'East Sea' '조선해' 'Oriental Sea' 'Sea of Korea' 'Eastern Sea' 'Sea of Japan' 등 다양한 명칭 사용

1602년 이탈리아 선교사 마테오리치

• '곤여만국전도'에 '일본해' 표기 명칭 처음 등장

1921년 창설된 국제수로국, 1929년 『해양과 바다의 경계』라는 책자 발행

- 세계 각국의 지도에서 '일본해' 표기가 확산되는 중요한 계기
- 한국은 당시 <mark>일제식민지배</mark> 하에 있었기 때문에 국제사회에서 동해 표기에 대해 정당한 의견을 제시할 수 없었음

『해양과 바다의 경계』의 제2판(1937)과 제3판(1953)이 각각 발간, 동해는 계속 '일본해' 로 표기

- 한국은 일제 강점, 전쟁으로 의견 제시 불가
- '91년 유엔가입, '92년 '유엔지명표준화회의' 동해표기 문제 국제서회에 공식 제기

KIOST 한국해양과막기술원

동해명칭 병기 확산 노력

우리나라의 입장

- 동해는 역사적으로 분명한 명칭
- 여러 나라에 둘러싸여 있는 수역으로 특정 국가 명칭 단독 표기 불가
- 일본 식민지배 하임의적 변경
- 분쟁 있는 지명 병기해야(국제사회의 규범)
- 20세기 이전 일본도 '조선해', '동해'로 부름

동해 명칭의 변화

- 기술적인 이유로 불가할 경우 제외, 각각의 지명 병기사용 권고(국제수로기구)
- 당사국간 합의하지 못할 경우 서로 다른 지명 모두 수용(유엔지명표준화회의)
- 다수의 세계 지도제작사들, 기존의 '일본해' 단독 표기에서 '동해/일본해' 병기로 입장 전환
- 2009년 세계지도 조사, 동해와 일본해 병기 비율 28.1%(2022년 현재 40%)로 확산 추세

(2000년: 2.8%, 2005년: 18.1%, 2009년 28.1% 2022년 40%)

- 2022 iHO 바다명칭 대제 '숫자로 된 고유 식별자'(디지털 명칭) 도입
- iHO 새로운 공식 해도에서 'Sea of Japan' 제외하자은 우리 제안 승인
- 일본해(Sea of Japan) 단독 표기-> 병기 -> 디지털 명칭 변화

독도 표기 문제

독도 영토주권 표기

• 세계 각국의 교과서나 책, 인터넷 홈페이지에 수록된 세계지도에 독도가 한국의 영토로 표기돼 있는 사례는 100개 중 1.5개꼴에 불과(일본 1.4%와 비슷)

독도 지명 표기

• 미표기: 2587건(76.5%)

• 독도 표기: 130건(3.9%)

• 다케시마 표기: 58건(1.7%)

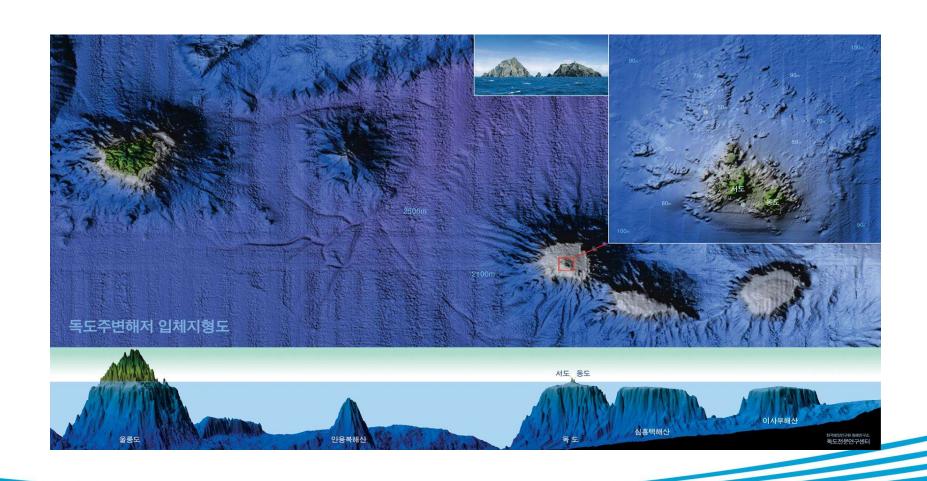
각국 세계 지도의 독도 영유권 표기 현황 (단위: 건) 자료: 외교통상부

한국 49(1.5%)

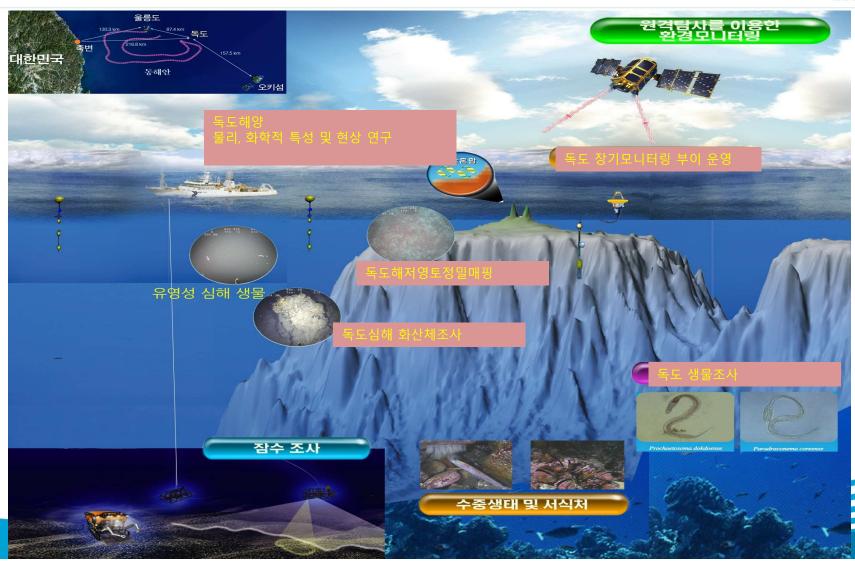
35 (1.0%)

미표기 3135 (92.7%)

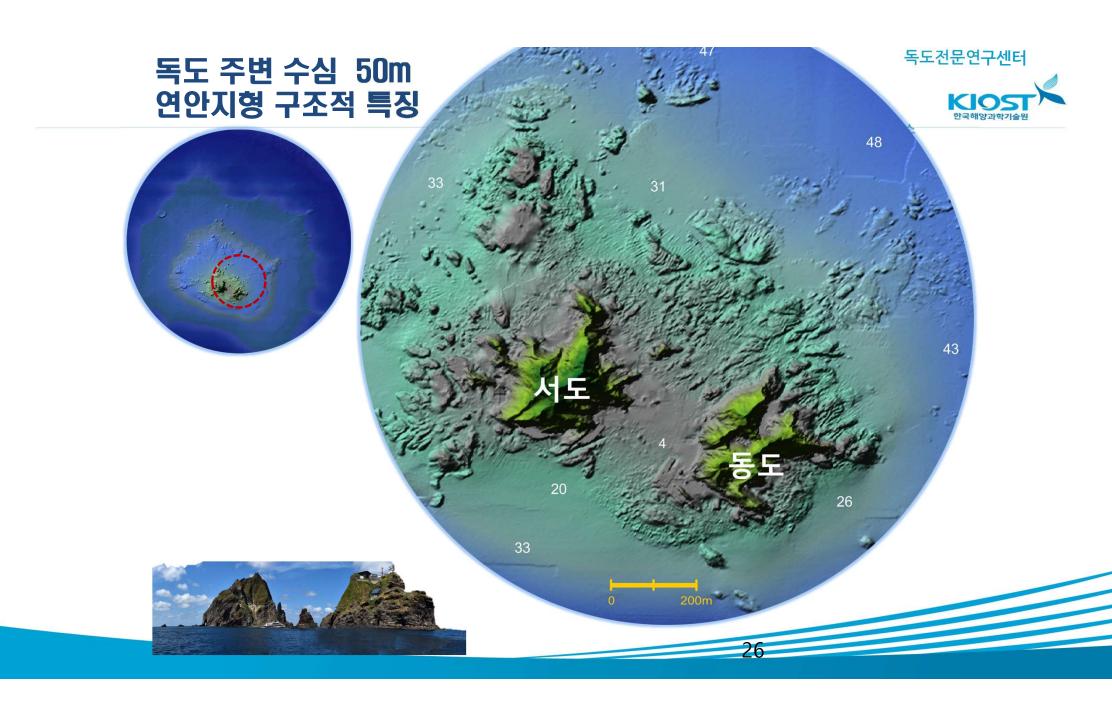
한국관함, 일본 영유권 주장


기타21 (0.6%) 분쟁지역 93(2.8%)

동해 품 안의 독도


독도 주변 지형 구조

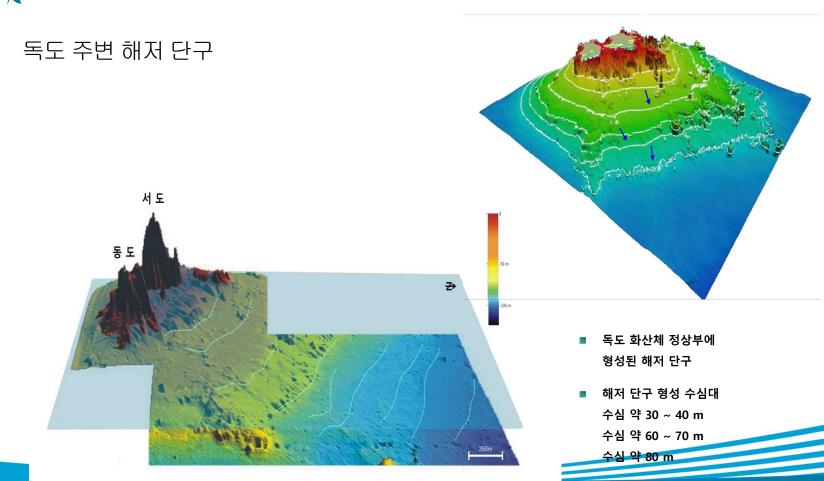
독도 해양과학조사 및 주요 연구활동



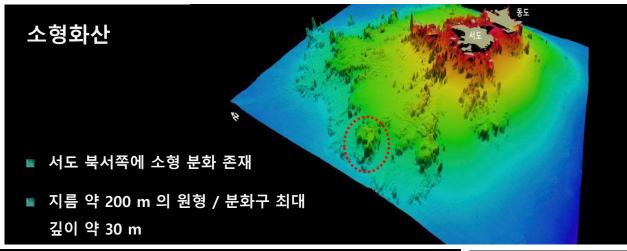
독도 화산체 전체모습

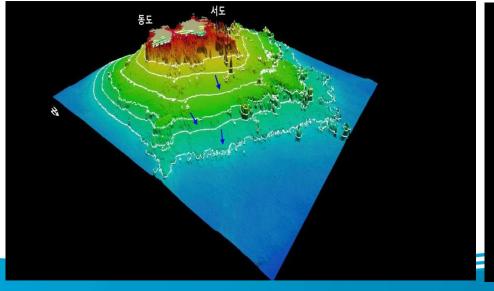
KIOST 한국해양과학기술원

수심 2,000 m부터 솟아, 전체 2300여m (한라산 1950m)

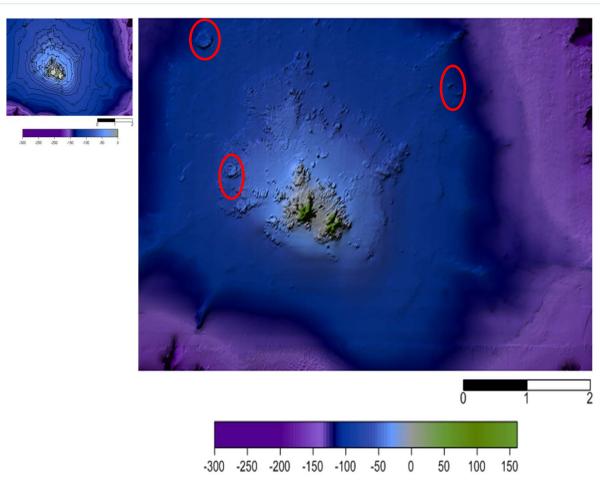


독도연안 해저모습



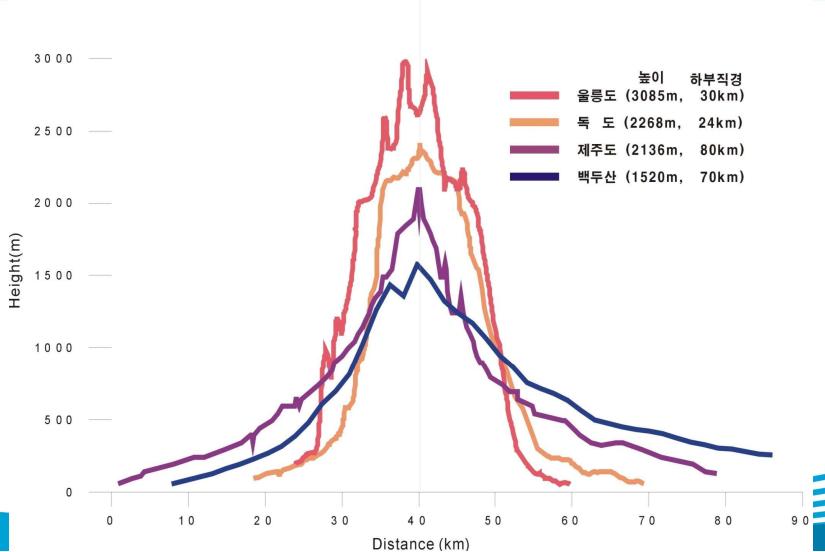


독도 주변 해역 해저지형

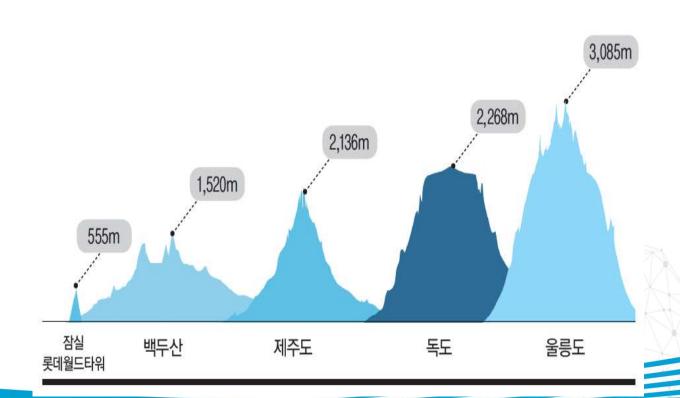


- 독도 화산체 정 상부에 형성된 해저 단구
- 해저 단구 형성 수심대 수심 약 30 ~ 40 m 수심 약 60 ~ 70 m 수심 약 80 m

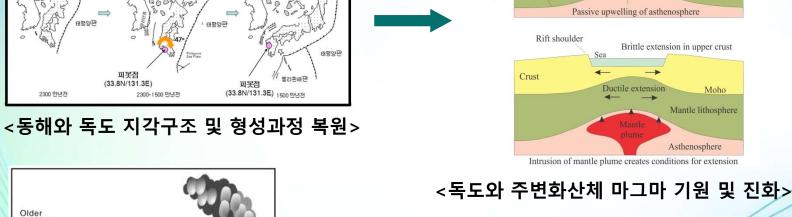
독도 주변 해저 소형 분화구들



독도 화산체 정상부의 3차원 지형도(빨간 원 : 소형분화구)

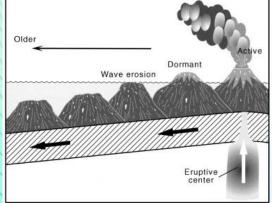

주요화산 형체 비교

주요화산 높이 비교



년구센터

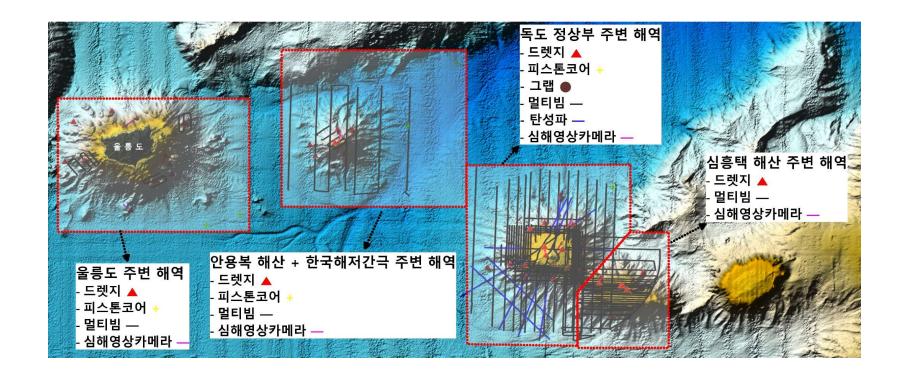
❖ 독도-울릉도 형성기원 및 변동 연구



Solidus 1330°C

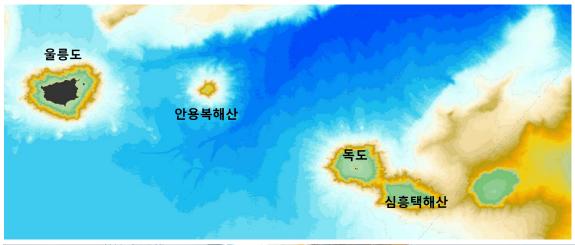
Brittle extension in upper crust

Mantle lithosphere


<독도와 주변화산체 환경 및 변동 연구>

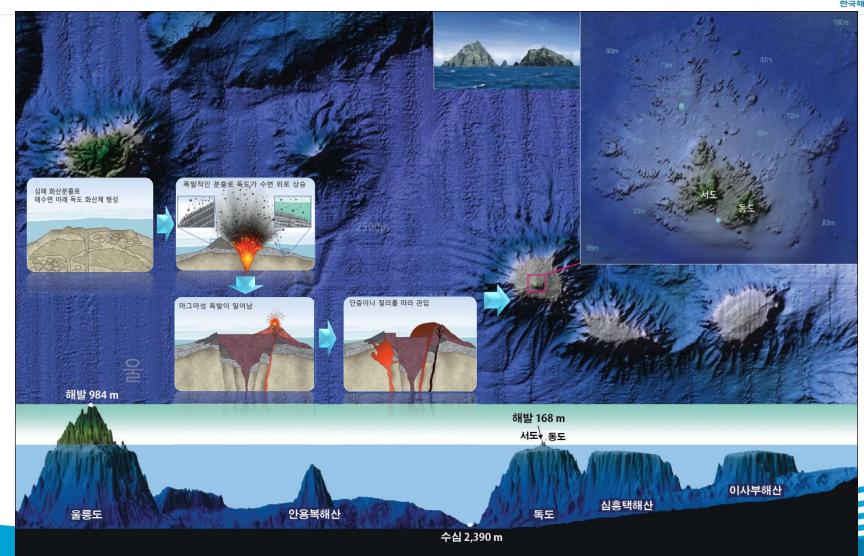
<독도와 주변화산체 분출사 정립 >

해양 현장조사

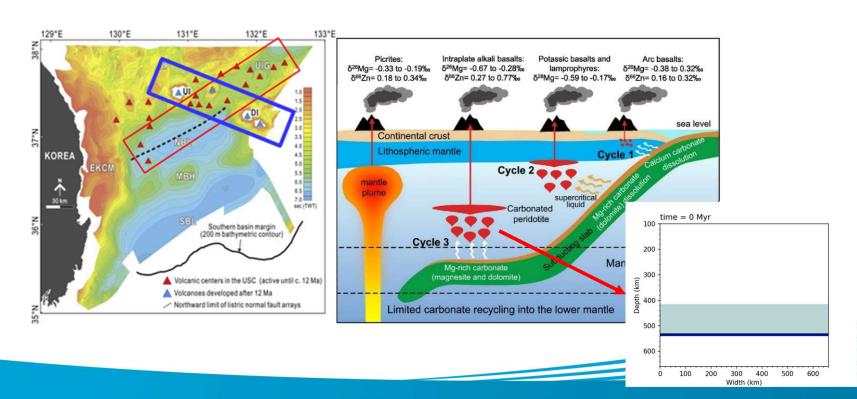

현장과학조사활동

독도-울릉도 형성기원 및 변동

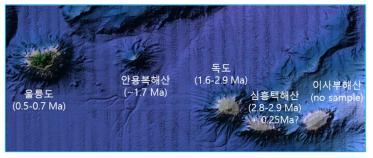
2023년 온누리호 현장조사 구역도(예정)

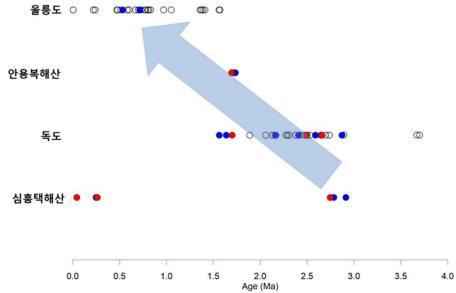

독도, 울릉도 및 주변 화산체(심흥택해산, 안용복해산) 해역

연도 정점수	해저암석 채취	심부퇴적물 채취
2018년	10	1
2019년	13	2
2020년	16	2
2021년	18	1
2022년	13	1
2023년 (예정)	10	2

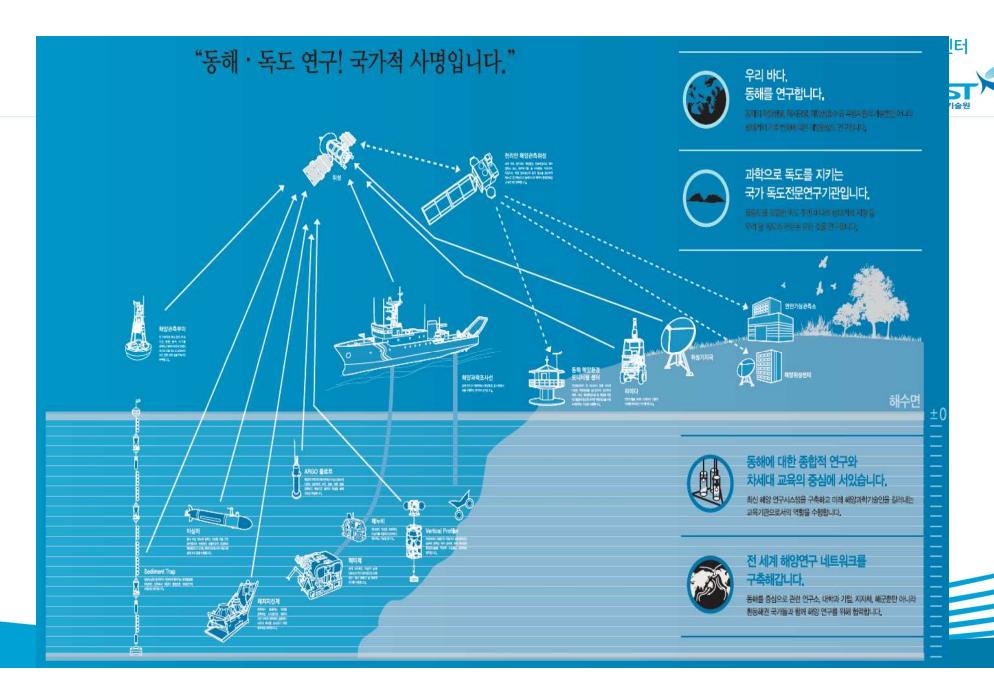


❖ 독도와 주변화산체 마그마 기원 및 진화

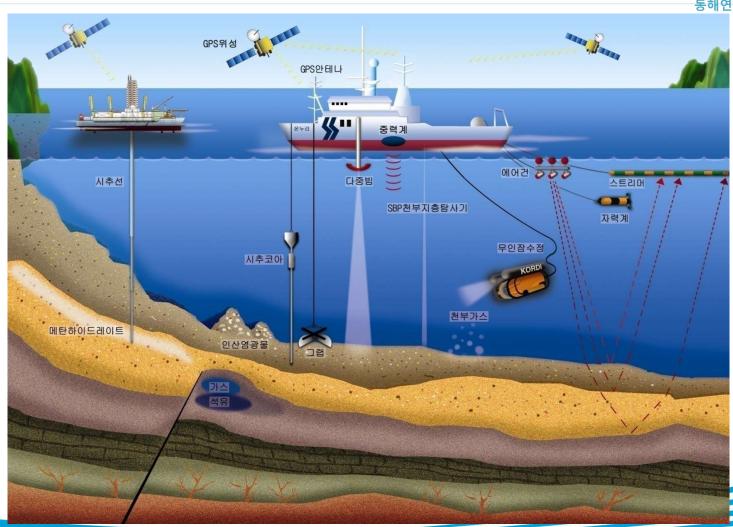

- ▶ 독도 와 주변화산체 고철질 및 규장질 화산암 기원마그마 해석
- ▶ 마그마 생성 프로세스 규명
- ightarrow 포유물 내 H_2O , OH, CO_2 vibration mode에 대한 정량 분석을 통해 마그마 내의 유체함량 추정


독도 및 주변화산체 마그마 기원 및 진화

❖ 독도 및 주변화산체 형성 시기 파악을 위한 Ar-Ar 절대연대 측정


- 전반적으로 심흥택해산 → 독도 → 안용복해산 → 울릉도의 순서로 젊은 연령을보임
- → 동해화산 연령 변화: 동→서 순차적 해저화산 활동의 기작

- 심흥택해산/독도 정상부의 현무암질 암석에서 젊은 연대값이 분석됨(0.25 Ma, 0.26 Ma, 0.04 Ma)
- → 화산활동이 재활성화되었음을 의미함


동해/독도 해양 과학조사활동

해저 지형 및 지질구조 조사 모식도

동해연구소

현장과학조사활동

현장과학조사활동(민간용선)

현장과학조사활동

* ROV

* 이사부호 드렛지

❖ 플랑크톤 채집

현장과학조사활동

• 해상조사활동

• 수중조사활동

• 잠수정을 이용한 독도 심해역 조사활동

독도 주변 해양조사 (심해영상자료 획득(심해카메라)

독도 주변 해양조사 심해로봇탐사(ROV탐사)

동해, 어떤 바다인가?

동해, 어떤 바다인가?

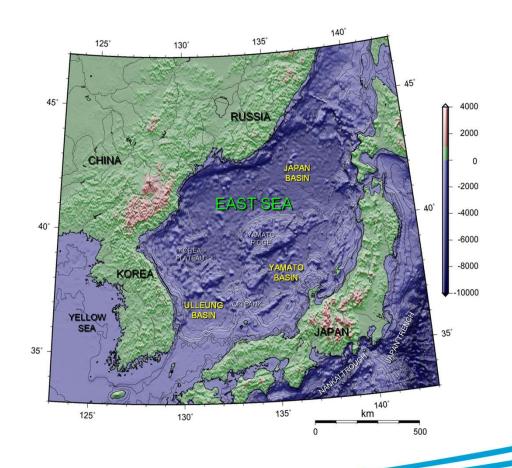
동해바다의 자연과학 특성

동해의 해양학적 특성 비교

	동해안	서해안	남해안	제주도
수온	1-27 °C	2-28 ℃	5-26 °C	5-26 °C
연평균수온	8.6-15.9°C	10.9-14.9℃	15.7-18.8℃	15.7-18.8℃
염분	33.0-34.4‰	31.0-34.6‰	33.0-34.5‰	33.0-34.5‰
평균 수심	1,684m	44m	101m	70m
최심부	4,049m	103m	227m	300m
면적	1,007,600km²	404,000km²	75,400km²	
용적	1,698,300km³	17,620km³	7,630km³	
조석(대조차)	0.2m(동해)	8.1m(인천)	0.2m(부산)	0.2m(서귀포)
환경적 특징	모래 해안, 암반 해안	갯벌, 리아스식 해안	리아스식 해안	화산섬, 암반해 안

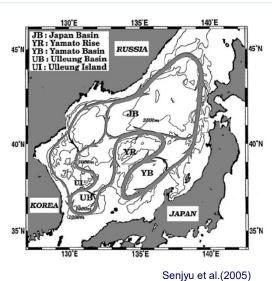
전 세계 기후변화 연구의 최적의 실험실, 동해

축소판 대양 (Miniature Ocean)

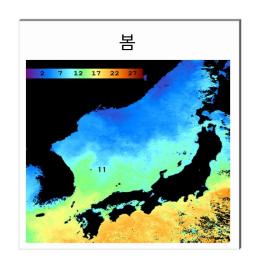

■ 대양과 유사한 구조와 해양특성, 해양현상

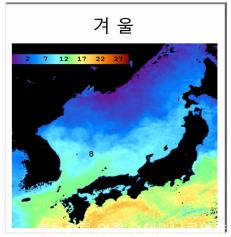
해양 대순환

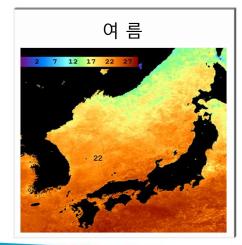
- 대양은 약 1,000년 주기
- 동해는 약 100년 주기로 자체 순환

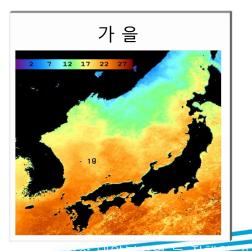

온난화 속도 빨라 기후변화 연구의 대표적인 바다 (유엔 기후변화보고서)

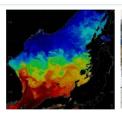
동해 표충 해류와 심충 해류






표층은 한류역과 난류역간 전선형성심층은 통합적 순환


동해 표충해수의 계절별 온도변화

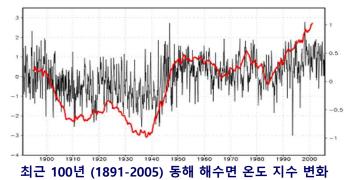


기재하 드 선 기계 중연구의

EAST SEA

동해 해양변동, 어떻게 일어나고 있나?

- **동해 지구 온난화 몸살** 매일신문 2010. 4. 27
 - → 전지구 해양 평균 1.5배 수온 상승
 - → 해수면 상승, 기상변화, 해수순환 변화, 해양산성화, 생태계 변화, 재해 증가
- **열대성 어종 속초까지 진출** 연합통신 2009. 9. 14
 - → 수온상승으로 인한 생물다양성 변동 심각
- 명태가 사라진다, 올해 10톤 이하 생산량 연합통신 2010. 1. 6 → 동해환경 변화로 인한 수산자원 변동
- **너울성 파도가 강릉항 방파제 걷던 관광객들 덮쳐** 연합뉴스 2010. 2. 17 → 자연재해 대응체계 미흡으로 피해 증가
- **일본 근해 지진 발생하면 동해 쓰나미** 조선일보 2010. 3. 3
 - → 일본근해 및 동해 지진 발생 빈도 증가
- 최근 심각성을 더해 가고 있는 동해안 해안침식 연합뉴스 2010. 2. 18
 - → 해수면 상승, 무분별한 연안개발로 인한 동해안 침식 심각


최근 동해 환경 변동

기후/해수 환경 변동

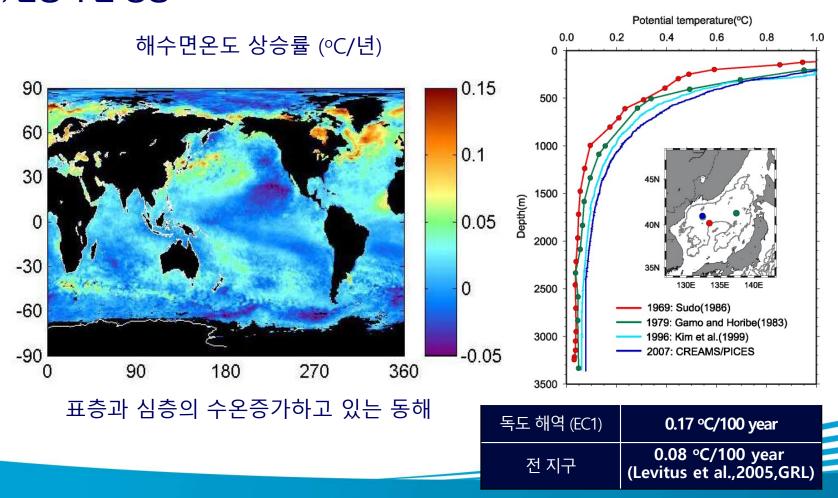
- ▶ 과거 100년 동안 **동해의 표층 수온이 약 2°C 상승**
- ▶ 1980년대 중반 이후, 년 0.06℃ 폭 상승 전세계 대양 2배 규모

생물자원/생태계 변동

- ▶ 명태(냉수성→북한쪽으로 이동), 오징어(온수성→어장위치 변동)
- ▶ **아열대 생물 출현** 빈도 증가 (상어류, 붉은바다거북, 보라문어 등)
- ▶ **백화현상** 가속화 (해조류, 전복, 소라 등 마을 공동 어장 피해 극심)

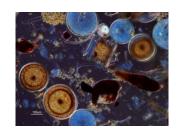
연안/해안 공간 변동

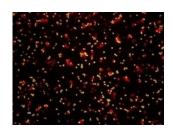
▶ 해안침식, 해수면 상승,동해안 이상 너울



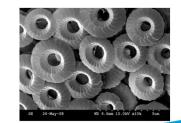
최근 동해 환경 변동

표층, 심층 수온 상승


동해 해양생태계 특성



- Semi-closed marginal sea (반폐쇄성 주변해)
 → 대양과 연안의 중간적 특성
- 한류와 난류가 교차하여 다양한 생물상이 존재
 → 생물다양성 높음
- 평균수심 1,684 m로 대부분 심해로 이루어짐 → 심해 생물 서식



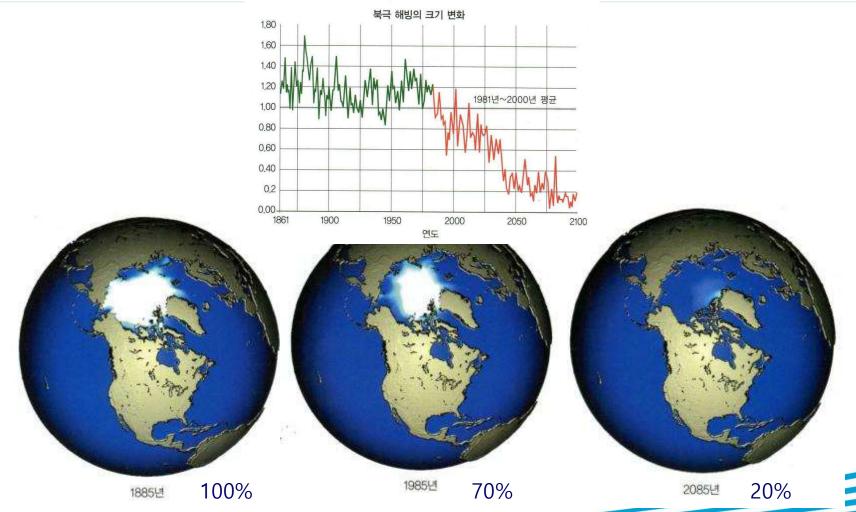
- 동해의 생물 생산력은 상대적으로 높음 (동해>동중국해>서태평양)
- 여름철 높은 생물생산력(춘계와 하계의 연안 용승현상으로 저층 영양물질이 표층 생태계로 공급됨)

최근 통해 환경 변동 연안/해안 공간

- **▶ 해안침식** 심각 (동해안 136개소)
- ▶ 해수면 상승 (동해안 해수면 6.5mm/y씩 상승)
- ▶ 동해안 **이상 너울** 현상 (05년 1명, 06년 1명, 07년 1명, 08년 3명, 09년 3명으로 피해 증가)
- ▶ 지진해일 피해(임원항 1983)

지진해일 피해사례 (임원항, 1983년)

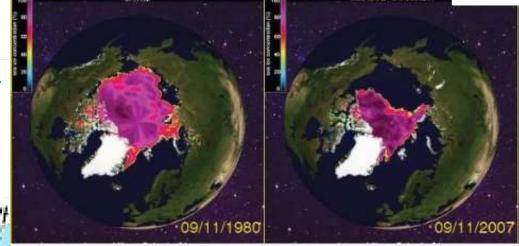
방파제 건설 전(1996)



방파제 건설 후(2002)

지구온난화

녹고 있는 해빙



북극항로 열리다

지구 온난화 북극해 해빙 가속화 북극 항로의 활용 증대

북극항로 부산-동해-로테르담 21,000->12,700km

동해, 어떤 바다인가?

동해바다의 자원적 잠재력

동해 해양자원 잠재력

수산자원, 바이오 자원, 광물자원, 에너지자원, 해수자원 수산자원

청정, **한류와 난류가 교차**하는 지역 -> 풍부한 수산자원

광물자원

인근 해저 **메탄가스수화물, 인산염, 석유, 천연가스** 등

에너지자원

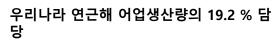
해양에너지 자원 밀도 높아

해상풍력, 해수온도차 및 파력에너지

해수자원

해양심층수 저온성, 청정성, 부영양성, 미네랄성 등 자원적 가치

수산자원의 보물창고, 동해



- 한류와 난류가 교차계절적 용승현상 (풍부한 영양물질 공급)

- 난수성 어종 (정어리, 멸치, 고등어, 꽁치, 방어, 삼치)
- 냉수성 어종 (대구, <mark>명태</mark>, 도루묵)

순위	어종명	어획량(톤)	어획비율(%)		
1	오징어류	103,800	46.4		
2	붉은대게	25,388	11.4		
3	청어	20,944	9.4		
4	가자미류	13,182	5.9		
5	문어	5,120	2.3		
6	대게	4,817	2.2		
7	꽁치	4,143	1.9		
8	도루묵	3,710	1.7		
9	까나리	3,582	1.6		
10	멸치	3,375	1.5		
소계		188,161	84.2		
기타		35,361	15.8		
합계		223,522	100.0		

동해 해양지원

해양바이오자원

▶ 해양생물 유래 소재 가치 급증

• 시장성 1998년 6억불 → 2010년 163억불

▶ 동해 해양생물유래 대표적 유용 물질

- 오징어 먹물 항암, 항균 효과 물질
- 정어리, 고등어
 - 등푸른 생선의 EPA(불포화지방산), DHA 효과
 - 뇌기능 촉진,동맥경화 예방, 혈관질환 유효
- 오징어, 굴, 문어
 - 타우린 다량 함유
 - 간장 해독 작용, 당뇨병 예방, 시력 개선)
- 새우, 게껍질
 - 중국 '본초강목' 양기왕성 최고식품, 혈압치료
- **멸치, 생선뼈** 주요 칼슘원

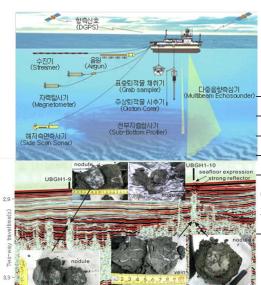
해양광물자원

- 인근 해저 메탄가스수화물, 인산염, 석유, 천연가스 등 해저지하자원 부존 가능성
- 98년 7월 27일 울산 남동쪽 50km 해상 대륙붕(천연 가스층) 발견
- 해양주권 확립 및 자원확보를 위한 노력 필요

코어퇴적물(흰색부분) 내에 함유되어 있는 고체상태의 가스수화물

메탄수화물이란?

메탄가스가 저온과 높은 압력하에서 물과 결합하여형성된 얼음과 같은 물질로 21세기 거대 신 청정에너지

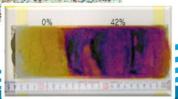


해양광물자원 /메탄가스하이드레이트

● 동해 부존 확인

- ■2000 ~ 2004년 동해 울릉분지 탐사, 메탄가스하이드레이트 부존 확인(세계에서 5번째)
- ■가스하이드레이트 매장량이 약 6억 톤 추정(우리나라 가스소비량 30년 분)

- 동해 포항기점 동북방 135km,
- 울릉도 남방 약100km
- 자연상태
- 메탄하이드레이트 채취 성공


광범위한 면적에 얇게 펼쳐져 있어 채취 자체가 쉽지 않고 채취과정에서 수중 생태계에 영향 가능성 기체상태 대기유출시

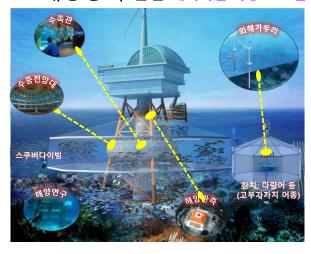
이산화탄소 20배 강력한 온실가스 생성 - 다루기 쉽지 않아

해양광물자원 / 천연기스

- 고래 8광구(울산 동남쪽 약 55Km)
- LNG 환산 80만 t 규모
 - 울산•경남 34만 가구 2년 사용량
- 국제가격 기준 약 2,800억 원 가치

고래-8광구

동해 해양에너지자원 (파력)

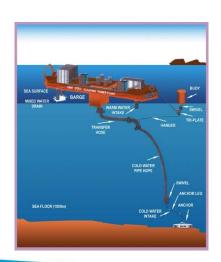

- 파랑 운동 및 위치에너지=>기계적 에너지=>전기에너지 변환 발전방식
- 동해안 파랑에너지 밀도 높아

동해 해양에너지자원 (풍력발전)

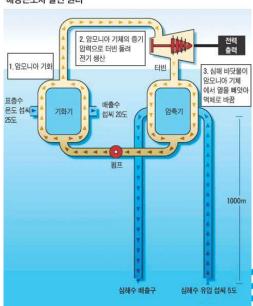
- **바람의 운동에너지** => 전기에너지
- 동해연안 풍속, 풍향 등 해상풍력발전 입지요건 우수
- ■동해안 풍력에너지는 경제적 수입성 보장
- 해상풍력 발전 해저시설 다용도로 활용(가두리 양식,바다목장, 잠수관광, 수중전망대, 수중연구관측 등)

동해 해양에너지자원(온도차발전)

■ 해양표면층 온수 (25-30℃)/심해 (5-7℃) 온도차 이용


열에너지 => 기계적에너지 => 전기에너지

현재 해양에 전세계 에너지 소비량의 약 4,000배 부존


■동해 타 해역보다 심층해역 많아

해수온도차 발전 산업화 진행 가능성 높아

■ 동해 심층수/발전소 온배수 활용 온도차 발전

해양온도차 발전 원리

동해 해양심층수자원

해양심층수란?

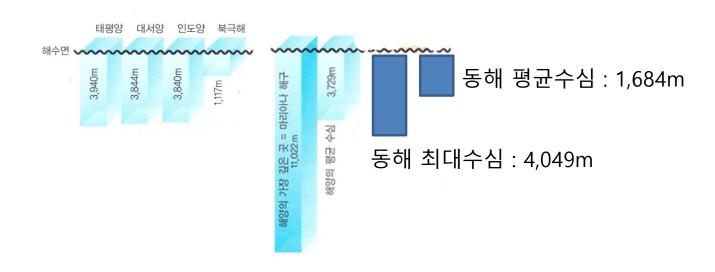
- 태양광 안 미치는 수심 200m 이상 심해바다 해수
- 안정된 저온 유지/영양염류 풍부/미네랄 균형성 양호

3대 특성

- **저온안정성:** 연중 약 2 °C 이하
- 부영양성: 풍부한 무기영양 염양염류 (표층수의 30~50배)
- 청정성: 무균, 비오염

부수 특성

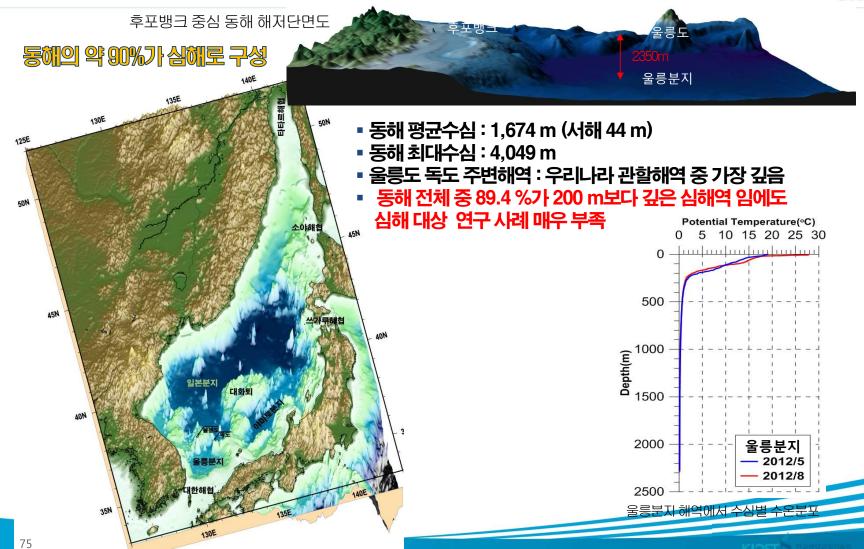
- **숙성성:** 심해 고압력 (20기압 이상)에 장기간 숙성 (100~1,000년)
- 미네랄특성: 90종류 이상의 원소 포함
- 음료수, 식품, 화장품, 의약품 등으로 개발 전통산업 안정화 및 신산업 창출



동해, 어떤 바다인가?

동해의 심해특성, 그 중요성

동해의 심해성



심해(深海, deep sea, deep layer)

- 수심 200m 이상의 깊은 바다
- 전체 해양의 90%
- 바닷물의 부피는 전체 해양의 95%

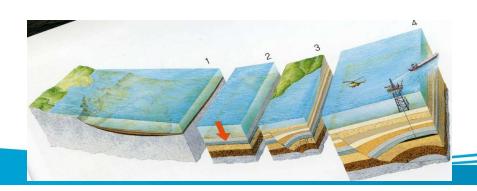
동해는 왜 심해연구에 필요한가?

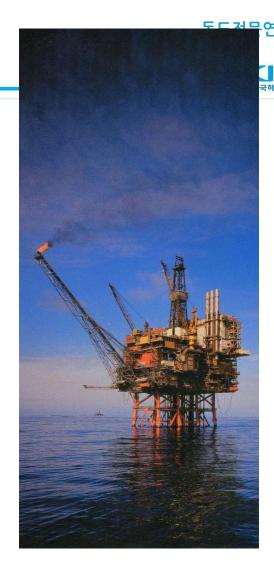
- 기후변화에 따른 심해환경, 생태계, 생물변동 문제
- 석유, 가스, 메탄가스하이드레이트(수백 년간 사용가능), 열수광상 다금속 황화물 등 광물자원과 생물자원, 심층수 자원 저장고
- 해양폐기물, CO2 등 환경문제
- 심해 지진, 화산, 지각운동, 변형 등
- 해양방위 및 해양재난 대응(침몰선, 구난/방제/인명구조)
- 국가 전략적 기술 확보 및 군사, 정보기술 등 해양영토 관리
- 해양플랜트/구조물 건설/유지관리(해저관측소 설치, 해저기지/수중구조물 건설) 해저 개발장비 및 엔지니어링 신산업 창출에 기여
- 심해/극한 베터리, 소나장비, 관측센서, 정밀운항제어, 수중위치추적, 수중통신 첨단요소기술 개발
- 심해 해양사고 대비한 장비, 인프라 개발

미국 60년대, 일본 80년대 심해 유인잠수정 개발

중국 2012년 최저심도 유인잠수정 개발 7,068m 제임스 캐머런 11,000m 심해잠수성공 (우리나라 무인 2007년 6,000m급,개발

유인잠수정 개발 유보


심해, 우주보다 더 가치, 혜택 주는 곳

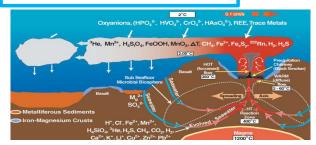


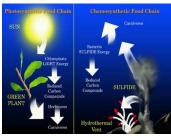
- ●전 세계 석유 매장량
 - ■1조 4747억 배럴(2012년 기준),
 - ■전 세계가 약 38년 정도 사용 분량
- 전 세계 천연가스 매장량
 - ■186조 84801억 입방미터(2012년 기준),
 - ■전 세계가 약 **50~70년** 정도 사용 분량
- 석유, 가스 현재 해양 가장 큰 에너지원
- 미국 생산 석유와 가스 ¼이상 연안대륙붕 생산

기술발달로 심해석유,가스 개발확장

해저 시추 장지

- 일종의 열수 분출공
- 수백 m에 걸쳐서 분출
- 열수에는 지각하부 마그마 기원 용해된 광물자원이 풍부
- 차세대 수소에너지원 초고온성 해양미생물 NA1(Thermococcus onnurineus NA1)


태평양 마리아나 열도 현재 활동 중인 열수 굴뚝 기저 부분의 횡단면



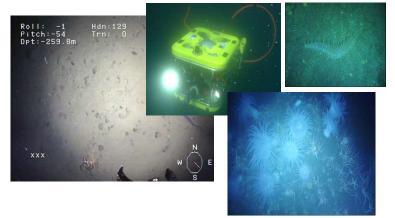
심해탐사를 위한 노력 국내연구

심해 열수시스템

해저열수시스템은 20세기의 가장 주목할 만한 과학적 발견

> 지각의 진화, 지구 내부물질 순환, 생명의 기원 등을 연구 할 수 있는 최적의 자연 학습장인 동시에 미래자원 보고

열수생명시스템의 연구의 중요성


- ✓ 초기 지구의 생명현상 이해 (지구상 생명의 공통 조상에 가까움)
- ✓ 지구 밖 생명의 존재 (목성의 위성 유로파, 토성의 위성 엔셀라두스)
- ✓ 극한환경 적응 생명기능의 이해 (유용한 천연물질과 새로운 생명공학의 원천)

심해탐사를 위한 노력 국내연구

KIOST で子が양과학기술원

심해 생태계

- 국립수산과학원에서는 주로 1000m 이내의 동해 심해 어류의 수산자원 관련 연구 중심으로 수행하고 있음
- 해양수산부 [KIOST] "독도의 지속가능한 이용연구 (2006~2013)"에서 울릉도-독도 사이 울릉분지의 심해퇴적물에서 심해 간극생물 및 대형저서생물에 대한 분포 특성 연구 일부 수행

수산과학원 저층 트롤조사 장면 및 채집 심해 수산생물

심흥택해산 심해 생물 서식지 영상 -독도의 지속가능한 이용연구

- 수산자원 국한된 심해 생물 연구로서 심해생태계 주요생물 군집 전반에 대한 체계적 연구 필요
- 울릉도-독도 사이의 국한된 해역의 일부 분류군에 대한 연구로서 연구 범위 확대 필요(IDST)

동해는 왜 심해연구에 필요한가?

동해 심해 - 자원의 보고

- 심해 생물다양성 자원의 보고 (500,000~1,000,000 종 예측)
- 동해 심해 대게, 홍게 등의 수산자원 서식처 → 수산자원의 구조 변화는 산업과 직접 관련
- 가스하이드레이트, 심층수 등의 해양자원의 중요한 산지 → 향후 개발 대비 환경영향 연구 필요

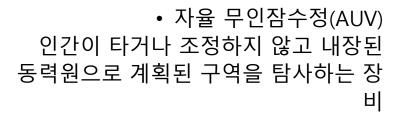
심해탐사기술확보 중요성

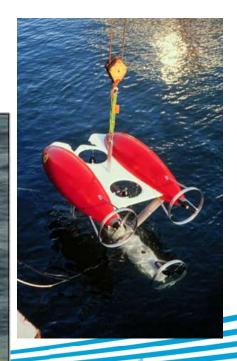
- 심해전략기술 조기 확보 및 국가 해양력 강화 시급
 - (중) 자오릉 7,602m 심해탐사 성공 후, 10,000급 2기, 4,500m급 1기 추가 건조중
 - (일) 12,000m 잠항 '신카이 12000' 추진계획 발표('15.2)
 - → 우리나라 유인잠수정 개발 유보상태
 - 유무인잠수정 이외에도
 - 수중로봇
 - 무인선
 - 글라이더
 - AUV
 - 심해시추기술
 - 해저과학기지 개발 시급

동해는 테스트배드 **동해연구소는 운용/관리 인프라 구축 운용 플랫폼**

수중로봇 이용 심해조사

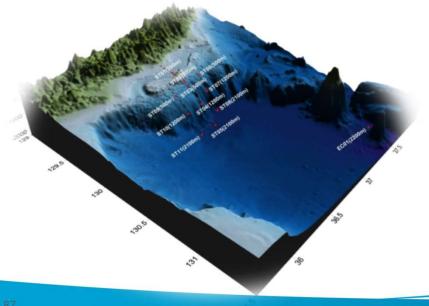
- 심해 광물 탐사
- 석유 및 가스 플랫폼 등 수중 공사
- 심해 생물 조사
- 심해 CO₂, 메탄가스
- 심해쓰레기 등 환경변화
- 심해 정밀지형, 지질조사




무인자동조사시스템

• 수중 글라이더

글라이더 내부 부력과 태 양에너지 활용 자동 운항 조사



동해 심해 극한환경 및 서식생물 특성연구 [DEEP EAST: 후포뱅크-울릉분지]

동해 심해 후포뱅크 및 울릉분지의

- 1) 심해 환경과 생태계의 특성을 파악하여 동해 심해 생물자원을 확보하고
- 2) 환경변화에 따른 중장기 동해 심해 생태계 반응 기작 및 변화 양상 이해

심해 유무인 잠수정 기술개발 및 운용인프라 구축

- 심해 유무인 잠수정 활용 기반 구축 및 활용연구 방안 도출
- 동해 실해역 탐사 (해미래 동해 탐사 수행)

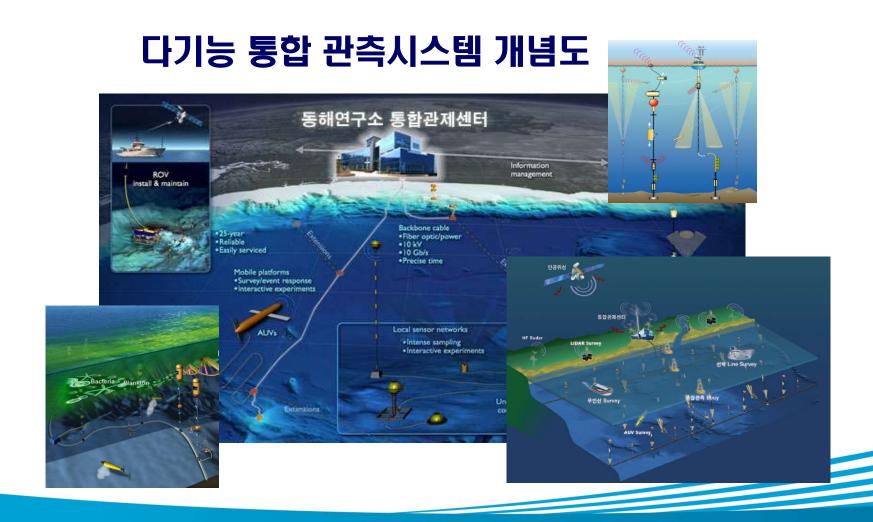
해미래 (6,000미터급 심해 무인 잠수정) 이용 2주간 동 해 심해 탐사 실시

동해 울릉분지 심해 생물상, 지질 특성, 침적 쓰레기 분 포 특성 등 영상 자료 확보

심해연구 현황

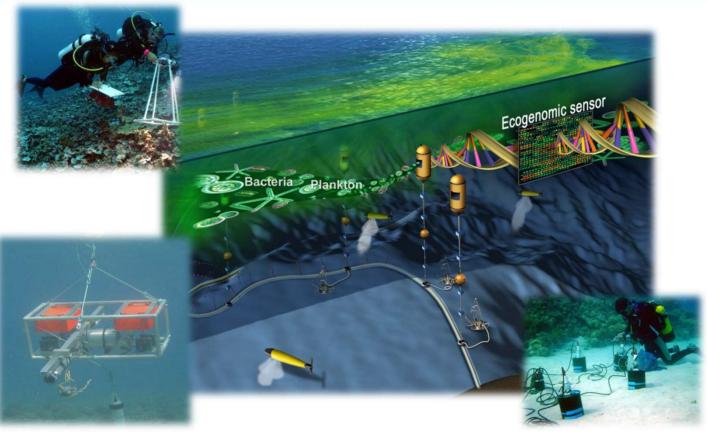
무인잠수정 해미래를 활용한 동해 울릉분지 및 후포퇴 주변 심해생물상 탐사와 먹이망 연구

- 동해 심해 생물상 탐사
- 동해 심해 먹이망 연구


EAST SEA 프로그램 왜 필요한가?

EAST SEA 프로그램 왜 필요한가

- 세계적 수준 해양연구기술 확보를 위해서는 미니어처 대양인 동해 활용, 해양 융복합적 해양과학 기술 활용거점 구축 필요
- 동해 해양 급변동 대응 필요 수온 상승, 오염 증가, 연안침식 가속화, 너울성 파고, 지진 해일, 백화 현상 확대, 아열대 종 증가, 주요 수산어종 변동 등의 급변동 대응 체제 구축 필요
- 동해 해양정보 실용화 기반 구축 및 활용 극대화 필요 국제수준의 고품질 실용가능한 해양 정보(기상, 환경 등) 확보 시급 일본, 미국 등에 의존하고 있는 정보를 우리 주도로 대체 필요 동해 해양급변동 감시 및 수산활동, 기상정보, 재해예보, 군사활동 등의 국가적, 대국민적 요구 대응 필요


동해의 중요성과 다면 국가간 협력 필요성을 감안한 국제적 연구 프로그램 추진 필요

EAST SEA 프로그램, 무엇을 하는가?

해양생태계 변동 관측 시스템

현장채집, 수중영상분석기, 챔버, 생물량 측정 센서를 이용한 생물다양성 및 생태특성 변동 모니터링 (생물량, 종다양성, 호흡량, 생산력, 유용/유해 생물 감시 등)

해저지진 및 지구조 변동 관측 시스템

케이블을 이용한 장기 해저 지진 및 지구조 변동 모니터링 시스템 모식도 (지진, 중력, 지자기 등)

해양과학기술의 도전 메가 프로젝트

-해상도시 개발

- -기후변화 2100년 평균해수면 1.1m 상승
- 전세계인구 30% 24억명 침수위험 노출
- 기후변화대응 해상도시건설 추진-선제적 방책 부유식 정주도시
- ...UN-HABITAT (인간 정주와 도시분야 관장) 제안

기후변화 해수면상승 위협받는 해안도시와 기후난민 위한 프로젝트

- 부산시 동참 추진 중

해저도시 개발

스타트렉, 스타워즈 우주도시

- 현재 5~6m 수중 호텔, 리조트 운영 중 괌 '피시 아이 마란 파크, 두바이 '아틀란<mark>티스터</mark> 팜 호텔 등
- 기압, 수압, 파도, 조류, 지진, 해일 등 악조건, 최첨단, 극한기술 필요
- 공사, 물자공급, 에너지, 산소공급, 통신, 식수 등 해결해야
- 해양, 조선, 소재, 토목, 건축, 기계, 의학, 기후, 지질, 정보통신, 로봇 등 통합기술
- 에너지- 육상전원 연결-파력, 조력, 해수온도차 에너지,
- 지진.해일 감시, 비상시 탈출체계
- 활용분야- 호텔.관광, 거주공간, 과학연구, 기후문제해결을 위한 탄소중립공간 조성,
- 군사용 수중감시 등
- 해양 신산업창출과 4차 산업분야 확대 효과
- 울산시 추진중

한일해저터널

한일 해저터널 사업, 200km이상(해저150km)의 세계최대 터널사업 엄청난 사회경제적, 국토공간 적 파급효과 경의선 및 동해선을 잇는 등 한반도종단철도(TKR) 및 대륙횡단철도(중국횡단철도(TCR), 시베리아횡단철도(TSR) 등)와 아시아 하이웨이망이 본격화,국제적인 경제공동체 건설 사업가능성 여부는 부정적 한일 해저터널의 기술적 검 토, 국토파급효과, 경제적 타당성 - 경제성, 안전, 정치권 찬반 양론

환동해권의 새로운 기회

한반도 동해안권 정책 방향

한반도 신 경제지도 구상

변방 아닌 유라시아대륙-해양연결 교량국가 남북 경제협·력통일 대륙해양 경제확산 중심 GTI 북중러 공동개발사업, 러시아까지 연결 에너지벨트, DMZ 등 접경지역 개발

2010->2016 동서남해안 및 내륙권 발전특별법 동해안권 발전 종합계획 변경

- -에너지 산업 거점지대화
- -해양과학 및 자원 개발
- -울산, 경주, 포항을 잇는 융복합 산업벨트
- -울릉도/독도의 지속가능한 이용

- 미래에너지/해양자원 신성장 동력 창출 신산업 창출 및 특화사업 기반구현 환동해 국제관광기만 및

- 환동해 소통인프라 확충

동해안권 축 교통 네트워크기반 구축

